Counting matchings via capacity-preserving operators
نویسندگان
چکیده
Abstract The notion of the capacity a polynomial was introduced by Gurvits around 2005, originally to give drastically simplified proofs van der Waerden lower bound for permanents doubly stochastic matrices and Schrijver’s inequality perfect matchings regular bipartite graphs. Since this seminal work, has been utilised various combinatorial quantities polynomial-time algorithms approximate such (e.g. number bases matroid). These types results are often proven giving bounds on how much particular differential operator can change given polynomial. In paper, we unify theory surrounding capacity-preserving operators tight preservation all nondegenerate real stability preservers. We then use new proof recent result Csikvári, which settled Friedland’s matching conjecture.
منابع مشابه
Symmetry-preserving matchings
In the literature, the matchings between spacetimes have been most of the times implicitly assumed to preserve some of the symmetries of the problem involved. But no definition for this kind of matching was given until recently. Loosely speaking, the matching hypersurface is restricted to be tangent to the orbits of a desired local group of symmetries admitted at both sides of the matching and ...
متن کاملRainbow Matchings: existence and counting
A perfect matching M in an edge–colored complete bipartite graph Kn,n is rainbow if no pair of edges in M have the same color. We obtain asymptotic enumeration results for the number of rainbow matchings in terms of the maximum number of occurrences of a color. We also consider two natural models of random edge–colored Kn,n and show that, if the number of colors is at least n, then there is whp...
متن کاملA characterization of orthogonality preserving operators
In this paper, we characterize the class of orthogonality preserving operators on an infinite-dimensional Hilbert space $H$ as scalar multiples of unitary operators between $H$ and some closed subspaces of $H$. We show that any circle (centered at the origin) is the spectrum of an orthogonality preserving operator. Also, we prove that every compact normal operator is a strongly orthogo...
متن کاملApproximate Counting of Matchings in Sparse Hypergraphs
In this paper we give a fully polynomial randomized approximation scheme (FPRAS) for the number of all matchings in hypergraphs belonging to a class of sparse, uniform hypergraphs. Our method is based on a generalization of the canonical path method to the case of uniform hypergraphs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Combinatorics, Probability & Computing
سال: 2021
ISSN: ['0963-5483', '1469-2163']
DOI: https://doi.org/10.1017/s0963548321000122